Transient molecular networks, a class of adaptive soft materials with remarkable application potential, display complex, and intriguing dynamic behavior. By performing dynamic light scattering on a wide angular range, we study the relaxation dynamics of a reversible network formed by DNA tetravalent nanoparticles, finding a slow relaxation mode that is wave vector independent at large q and crosses over to a standard q(-2) viscoelastic relaxation at low q. Exploiting the controlled properties of our DNA network, we attribute this mode to fluctuations in local elasticity induced by connectivity rearrangement. We propose a simple beads and springs model that captures the basic features of this q(0) behavior.
Fluctuating Elasticity Mode in Transient Molecular Networks / Nava, Giovanni; Rossi, Marina; Biffi, Silvia; Sciortino, Francesco; Bellini, Tommaso. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 119:7(2017). [10.1103/PhysRevLett.119.078002]
Fluctuating Elasticity Mode in Transient Molecular Networks
Rossi Marina;Biffi Silvia;Sciortino Francesco;
2017
Abstract
Transient molecular networks, a class of adaptive soft materials with remarkable application potential, display complex, and intriguing dynamic behavior. By performing dynamic light scattering on a wide angular range, we study the relaxation dynamics of a reversible network formed by DNA tetravalent nanoparticles, finding a slow relaxation mode that is wave vector independent at large q and crosses over to a standard q(-2) viscoelastic relaxation at low q. Exploiting the controlled properties of our DNA network, we attribute this mode to fluctuations in local elasticity induced by connectivity rearrangement. We propose a simple beads and springs model that captures the basic features of this q(0) behavior.File | Dimensione | Formato | |
---|---|---|---|
Nava_Fluctuating_2017.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.