Recent results of Hindman, Leader and Strauss and of Fernández-Bretón and Rinot showed that natural versions of Hindman’s Theorem fail for all uncontable cardinals. On the other hand, Komjáth proved a result in the positive direction, showing that there are arbitrarily large abelian groups satisfying some Hindman-type property. In this note we show how a family of natural Hindman-type theorems for uncountable cardinals can be obtained by adapting some recent results of the author from their original countable setting.

A note on Hindman-Type Theorems for uncountable cardinals / Carlucci, Lorenzo. - In: ORDER. - ISSN 0167-8094. - STAMPA. - 36:1(2019), pp. 19-22. [10.1007/s11083-018-9452-9]

A note on Hindman-Type Theorems for uncountable cardinals

Lorenzo Carlucci
2019

Abstract

Recent results of Hindman, Leader and Strauss and of Fernández-Bretón and Rinot showed that natural versions of Hindman’s Theorem fail for all uncontable cardinals. On the other hand, Komjáth proved a result in the positive direction, showing that there are arbitrarily large abelian groups satisfying some Hindman-type property. In this note we show how a family of natural Hindman-type theorems for uncountable cardinals can be obtained by adapting some recent results of the author from their original countable setting.
2019
Hindman's Theorem; uncountable cardinals; infinite combinatorics
01 Pubblicazione su rivista::01a Articolo in rivista
A note on Hindman-Type Theorems for uncountable cardinals / Carlucci, Lorenzo. - In: ORDER. - ISSN 0167-8094. - STAMPA. - 36:1(2019), pp. 19-22. [10.1007/s11083-018-9452-9]
File allegati a questo prodotto
File Dimensione Formato  
Carlucci_Hindman-Type-Theorems_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 354.9 kB
Formato Adobe PDF
354.9 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1064254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact