A simplified, but non trivial, mechanical model—gas of N particles of mass m in a box partitioned by n mobile adiabatic walls of mass M—interacting with two thermal baths at different temperatures, is discussed in the framework of kinetic theory. Following an approach due to Smoluchowski, from an analysis of the collisions particles/walls, we derive the values of the main thermodynamic quantities for the stationary non-equilibrium states. The results are compared with extensive numerical simulations; in the limit of large n, mN/M 1 and m/M 1, we find a good approximation of Fourier’s law.

Fourier's law in a generalized piston model / Caprini, Lorenzo; Cerino, Luca; Sarracino, Alessandro; Vulpiani, Angelo. - In: ENTROPY. - ISSN 1099-4300. - 19:7(2017), p. 350. [10.3390/e19070350]

Fourier's law in a generalized piston model

Caprini, Lorenzo;Cerino, Luca;Sarracino, Alessandro;Vulpiani, Angelo
2017

Abstract

A simplified, but non trivial, mechanical model—gas of N particles of mass m in a box partitioned by n mobile adiabatic walls of mass M—interacting with two thermal baths at different temperatures, is discussed in the framework of kinetic theory. Following an approach due to Smoluchowski, from an analysis of the collisions particles/walls, we derive the values of the main thermodynamic quantities for the stationary non-equilibrium states. The results are compared with extensive numerical simulations; in the limit of large n, mN/M 1 and m/M 1, we find a good approximation of Fourier’s law.
2017
Fourier's law; Kinetic theory; Non equilibrium statistical mechanics; Physics and Astronomy (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Fourier's law in a generalized piston model / Caprini, Lorenzo; Cerino, Luca; Sarracino, Alessandro; Vulpiani, Angelo. - In: ENTROPY. - ISSN 1099-4300. - 19:7(2017), p. 350. [10.3390/e19070350]
File allegati a questo prodotto
File Dimensione Formato  
Vulpiani_Fourier’s-Law.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 401.49 kB
Formato Adobe PDF
401.49 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1062834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact