In this paper we deal with the existence of critical points of functionals defined on the Sobolev space W-0(1,p)(Omega), p > 1, by J(u) = (Omega)integral S(x, u, Du) dx, where Omega is a bounded, open subset of R(N). Even for very simple examples in R(N) the differentiability of J(u) can fail. To overcome this difficulty we prove a suitable version of the Ambrosetti-Rabinowitz Mountain Pass Theorem applicable to functionals which are not differentiable in all directions. Existence and multiplicity of nonnegative critical points are also studied through the use of this theorem.

Critical points for multiple integrals of the calculus of variations / David, Arcoya; Boccardo, Lucio. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 134:3(1996), pp. 249-274. [10.1007/bf00379536]

Critical points for multiple integrals of the calculus of variations

BOCCARDO, Lucio
1996

Abstract

In this paper we deal with the existence of critical points of functionals defined on the Sobolev space W-0(1,p)(Omega), p > 1, by J(u) = (Omega)integral S(x, u, Du) dx, where Omega is a bounded, open subset of R(N). Even for very simple examples in R(N) the differentiability of J(u) can fail. To overcome this difficulty we prove a suitable version of the Ambrosetti-Rabinowitz Mountain Pass Theorem applicable to functionals which are not differentiable in all directions. Existence and multiplicity of nonnegative critical points are also studied through the use of this theorem.
1996
01 Pubblicazione su rivista::01a Articolo in rivista
Critical points for multiple integrals of the calculus of variations / David, Arcoya; Boccardo, Lucio. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 134:3(1996), pp. 249-274. [10.1007/bf00379536]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/10518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 81
social impact