In this paper we consider a semilinear elliptic equation with a strong singularity at $u=0$, namely \begin{equation*} \begin{cases} \dys u\geq 0 & \mbox{in } \Omega,\\ \displaystyle - div \,A(x) D u = F(x,u)& \mbox{in} \; \Omega,\\ u = 0 & \mbox{on} \; \partial \Omega,\\ \end{cases} \end{equation*} with $F(x,s)$ a Carath\'eodory function such that $$ 0\leq F(x,s)\leq \frac{h(x)}{\Gamma(s)}\,\,\mbox{ a.e. } x\in\Omega,\, \forall s>0, $$ with $h$ in some $L^r(\Omega)$ and $\Gamma$ a $C^1([0,+\infty[)$ function such that $\Gamma(0)=0$ and $\Gamma'(s)>0$ for every $s>0$. We introduce a notion of solution to this problem in the spirit of the solutions defined by transposition. This definition allows us to prove the existence and the stability of this solution, as well as its uniqueness when $F(x,s)$ is nonincreasing in $s$.
Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0 / Giachetti, D.; Martinez-Aparicio, P. J.; Murat, F.. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - STAMPA. - (2018). [10.2422/2036-2145.201612_008]
Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0
D. Giachetti;
2018
Abstract
In this paper we consider a semilinear elliptic equation with a strong singularity at $u=0$, namely \begin{equation*} \begin{cases} \dys u\geq 0 & \mbox{in } \Omega,\\ \displaystyle - div \,A(x) D u = F(x,u)& \mbox{in} \; \Omega,\\ u = 0 & \mbox{on} \; \partial \Omega,\\ \end{cases} \end{equation*} with $F(x,s)$ a Carath\'eodory function such that $$ 0\leq F(x,s)\leq \frac{h(x)}{\Gamma(s)}\,\,\mbox{ a.e. } x\in\Omega,\, \forall s>0, $$ with $h$ in some $L^r(\Omega)$ and $\Gamma$ a $C^1([0,+\infty[)$ function such that $\Gamma(0)=0$ and $\Gamma'(s)>0$ for every $s>0$. We introduce a notion of solution to this problem in the spirit of the solutions defined by transposition. This definition allows us to prove the existence and the stability of this solution, as well as its uniqueness when $F(x,s)$ is nonincreasing in $s$.File | Dimensione | Formato | |
---|---|---|---|
Giachetti_Definition_2017.pdf
accesso aperto
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
466.8 kB
Formato
Adobe PDF
|
466.8 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.