We derive finite boost transformations based on the Lorentz sector of the bicross-product-basis kappa -Poincare Hopf algebra. We emphasize the role of these boost transformations in a recently-proposed new relativistic theory, and their relevance for experimental studies presently being planned. We find that when the (dimensionful) deformation parameter is identified with the Planck length, which together with the speed-of-light constant has the status of observer-independent scale in the new relativistic theory, the deformed boosts saturate at the value of momentum that corresponds to the inverse of the Planck length. (C) 2001 Published by Elsevier Science B.V.

Deformed boost transformations that saturate at the Planck scale / Bruno, Nicola; AMELINO-CAMELIA, Giovanni; J., Kowalski Glikman. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 522:1-2(2001), pp. 133-138. [10.1016/s0370-2693(01)01264-3]

Deformed boost transformations that saturate at the Planck scale

BRUNO, Nicola;AMELINO-CAMELIA, Giovanni;
2001

Abstract

We derive finite boost transformations based on the Lorentz sector of the bicross-product-basis kappa -Poincare Hopf algebra. We emphasize the role of these boost transformations in a recently-proposed new relativistic theory, and their relevance for experimental studies presently being planned. We find that when the (dimensionful) deformation parameter is identified with the Planck length, which together with the speed-of-light constant has the status of observer-independent scale in the new relativistic theory, the deformed boosts saturate at the value of momentum that corresponds to the inverse of the Planck length. (C) 2001 Published by Elsevier Science B.V.
2001
01 Pubblicazione su rivista::01a Articolo in rivista
Deformed boost transformations that saturate at the Planck scale / Bruno, Nicola; AMELINO-CAMELIA, Giovanni; J., Kowalski Glikman. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 522:1-2(2001), pp. 133-138. [10.1016/s0370-2693(01)01264-3]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/105117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 221
  • ???jsp.display-item.citation.isi??? 215
social impact