We consider some nonlinear Dirichlet problems and we study how lower order terms can give a regularizing effect on the solutions: the existence of distributional solutions with minimal properties (solutions in W0^1,1 , functional space not so usual for finding solutions of elliptic problems) or finite energy solutions, even with nonregular data.
Some elliptic equations with $W_0^1,1$ solutions / Boccardo, Lucio; Cirmi G., Rita. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 153:(2017), pp. 130-141. [10.1016/j.na.2016.09.007]
Some elliptic equations with $W_0^1,1$ solutions
Boccardo Lucio
;
2017
Abstract
We consider some nonlinear Dirichlet problems and we study how lower order terms can give a regularizing effect on the solutions: the existence of distributional solutions with minimal properties (solutions in W0^1,1 , functional space not so usual for finding solutions of elliptic problems) or finite energy solutions, even with nonregular data.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Boccardo_Some-elliptic-equations_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
634.61 kB
Formato
Adobe PDF
|
634.61 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.