We discuss the prospects for bounding and perhaps even measuring quantum gravity effects on the dispersion of light using the highest-energy photons produced in gamma-ray bursts (GRBs) measured by the Fermi telescope. These prospects are brighter than might have been expected, as in the first ten months of operation, Fermi has so far reported eight events with photons over 100 MeV seen by its Large Area Telescope. We review features of these events which may bear on Planck-scale phenomenology, and we discuss the possible implications for alternative scenarios for in-vacua dispersion coming from breaking or deforming of Poincare invariance. Among these are semiconservative bounds (which rely on some relatively weak assumptions about the sources) on subluminal and superluminal in-vacuo dispersion. We also propose that it may be possible to look for the arrival of still higher-energy photons and neutrinos from GRBs with energies in the range 10(14)-10(17) eV. In some cases the quantum gravity dispersion effect would predict these arrivals to be delayed or advanced by days to months from the GRB, giving a clean separation of astrophysical source and spacetime propagation effects.

Prospects for constraining quantum gravity dispersion with near term observations / AMELINO-CAMELIA, Giovanni; Lee, Smolin. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 80:8(2009), pp. 084017-1-084017-14. [10.1103/physrevd.80.084017]

Prospects for constraining quantum gravity dispersion with near term observations

AMELINO-CAMELIA, Giovanni;
2009

Abstract

We discuss the prospects for bounding and perhaps even measuring quantum gravity effects on the dispersion of light using the highest-energy photons produced in gamma-ray bursts (GRBs) measured by the Fermi telescope. These prospects are brighter than might have been expected, as in the first ten months of operation, Fermi has so far reported eight events with photons over 100 MeV seen by its Large Area Telescope. We review features of these events which may bear on Planck-scale phenomenology, and we discuss the possible implications for alternative scenarios for in-vacua dispersion coming from breaking or deforming of Poincare invariance. Among these are semiconservative bounds (which rely on some relatively weak assumptions about the sources) on subluminal and superluminal in-vacuo dispersion. We also propose that it may be possible to look for the arrival of still higher-energy photons and neutrinos from GRBs with energies in the range 10(14)-10(17) eV. In some cases the quantum gravity dispersion effect would predict these arrivals to be delayed or advanced by days to months from the GRB, giving a clean separation of astrophysical source and spacetime propagation effects.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Prospects for constraining quantum gravity dispersion with near term observations / AMELINO-CAMELIA, Giovanni; Lee, Smolin. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 80:8(2009), pp. 084017-1-084017-14. [10.1103/physrevd.80.084017]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/104432
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 142
  • ???jsp.display-item.citation.isi??? 126
social impact