We use the gradients of theta functions at odd two torsion points — thought of as vector-valued modular forms — to construct holomorphic differential forms on the moduli space of principally polarized abelian varieties, and to characterize the locus of decomposable abelian varieties in terms of the Gauss images of two-torsion points
Vector-valued modular forms and the Gauss map / Dalla Piazza, Francesco; Fiorentino, Alessio; Grushevsky, Samuel; Perna, Sara; SALVATI MANNI, Riccardo. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0643. - ELETTRONICO. - 22:2017(2017), pp. 1063-1080.
Vector-valued modular forms and the Gauss map
Fiorentino, AlessioMembro del Collaboration Group
;Riccardo Salvati, ManniMembro del Collaboration Group
2017
Abstract
We use the gradients of theta functions at odd two torsion points — thought of as vector-valued modular forms — to construct holomorphic differential forms on the moduli space of principally polarized abelian varieties, and to characterize the locus of decomposable abelian varieties in terms of the Gauss images of two-torsion pointsFile allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
DallaPiazza_Vector-valued_2017.pdf
accesso aperto
Note: articolo
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
234.46 kB
Formato
Adobe PDF
|
234.46 kB | Adobe PDF | |
DallaPiazza_Vector-valued_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
198.43 kB
Formato
Adobe PDF
|
198.43 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.