Doubly-special relativity" (DSR), the idea of a Planck-scale Minkowski limit that is still a relativistic theory, but with both the Planck scale and the speed-of-light scale as nontrivial relativistic invariants, was proposed as a physics intuition for several scenarios which may arise in the study of the quantum-gravity problem, but most DSR studies focused exclusively on the search of formalisms for the description of a specific example of such a Minkowski limit. A novel contribution to the DSR physics intuition came from a recent paper by Smolin suggesting that the emergence of the Planck scale as a second nontrivial relativistic invariant might be inevitable in quantum gravity, relying only on some rather robust expectations concerning the semiclassical approximation of quantum gravity. Here, we attempt to strengthen Smolin's argument by observing that an analysis of some independently-proposed Planck-scale particle-localization limits, such as the "Generalized Uncertainty Principle" often attributed to string theory in the literature, also suggests that the emergence of a DSR Minkowski limit might be inevitable. We discuss a possible link between this observation and recent results on logarithmic corrections to the entropy-area black-hole formula, and observe that both the analysis reported here and Smolin's analysis appear to suggest that the examples of DSR Minkowski limits for which a formalism has been sought in the literature might not be sufficiently general. We also stress that, as we now contemplate the hypothesis of a DSR Minkowski limit, there is an additional challenge for those in the quantum-gravity community attributing to the Planck length the role of "fundamental length scale.

Building a case for a Planck-scale-deformed boost action: The Planck-scale particle-localization limit / AMELINO-CAMELIA, Giovanni. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS D. - ISSN 0218-2718. - 14:12(2005), pp. 2167-2180. [10.1142/s0218271805007978]

Building a case for a Planck-scale-deformed boost action: The Planck-scale particle-localization limit

AMELINO-CAMELIA, Giovanni
2005

Abstract

Doubly-special relativity" (DSR), the idea of a Planck-scale Minkowski limit that is still a relativistic theory, but with both the Planck scale and the speed-of-light scale as nontrivial relativistic invariants, was proposed as a physics intuition for several scenarios which may arise in the study of the quantum-gravity problem, but most DSR studies focused exclusively on the search of formalisms for the description of a specific example of such a Minkowski limit. A novel contribution to the DSR physics intuition came from a recent paper by Smolin suggesting that the emergence of the Planck scale as a second nontrivial relativistic invariant might be inevitable in quantum gravity, relying only on some rather robust expectations concerning the semiclassical approximation of quantum gravity. Here, we attempt to strengthen Smolin's argument by observing that an analysis of some independently-proposed Planck-scale particle-localization limits, such as the "Generalized Uncertainty Principle" often attributed to string theory in the literature, also suggests that the emergence of a DSR Minkowski limit might be inevitable. We discuss a possible link between this observation and recent results on logarithmic corrections to the entropy-area black-hole formula, and observe that both the analysis reported here and Smolin's analysis appear to suggest that the examples of DSR Minkowski limits for which a formalism has been sought in the literature might not be sufficiently general. We also stress that, as we now contemplate the hypothesis of a DSR Minkowski limit, there is an additional challenge for those in the quantum-gravity community attributing to the Planck length the role of "fundamental length scale.
2005
quantum gravity; quantum groups; relativity
01 Pubblicazione su rivista::01a Articolo in rivista
Building a case for a Planck-scale-deformed boost action: The Planck-scale particle-localization limit / AMELINO-CAMELIA, Giovanni. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS D. - ISSN 0218-2718. - 14:12(2005), pp. 2167-2180. [10.1142/s0218271805007978]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/104197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 15
social impact