Amyotrophic lateral sclerosis (ALS) is a disorder that involves the degeneration of motor neurons, muscle atrophy, and paralysis. In a few familiar forms of ALS, mutations in the superoxide dismutase-1 (SOD1) gene have been held responsible for the degeneration of motor neurons. Nevertheless, after the discovery of the SOD1 mutations no consensus has emerged as to which cells, tissues and pathways are primarily implicated in the pathogenic events that lead to ALS. Ubiquitous overexpression of mutant SOD1 in transgenic animals recapitulates the pathological features of ALS. However, the toxicity of mutant SOD1 is not necessarily limited to the central nervous system. Views about ALS pathogenesis are now enriched by the recent discovery of mutations in a pair of DNA/RNA-binding proteins called TDP-43 and FUS/TLS as causes of familial and sporadic forms of ALS. Although the steps that lead to the pathological state are well defined, several fundamental issues are still controversial: are the motor neurons the first direct targets of ALS; and what is the contribution of non-neuronal cells, if any, to the pathogenesis of ALS? The state of the art of ALS pathogenesis and the open questions are discussed in this review.

State of the art and the dark side of amyotrophic lateral sclerosis / Musaro', Antonio. - In: WORLD JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 1949-8454. - 1:5(2010), pp. 62-68. [10.4331/wjbc.v1.i5.62]

State of the art and the dark side of amyotrophic lateral sclerosis.

MUSARO', Antonio
2010

Abstract

Amyotrophic lateral sclerosis (ALS) is a disorder that involves the degeneration of motor neurons, muscle atrophy, and paralysis. In a few familiar forms of ALS, mutations in the superoxide dismutase-1 (SOD1) gene have been held responsible for the degeneration of motor neurons. Nevertheless, after the discovery of the SOD1 mutations no consensus has emerged as to which cells, tissues and pathways are primarily implicated in the pathogenic events that lead to ALS. Ubiquitous overexpression of mutant SOD1 in transgenic animals recapitulates the pathological features of ALS. However, the toxicity of mutant SOD1 is not necessarily limited to the central nervous system. Views about ALS pathogenesis are now enriched by the recent discovery of mutations in a pair of DNA/RNA-binding proteins called TDP-43 and FUS/TLS as causes of familial and sporadic forms of ALS. Although the steps that lead to the pathological state are well defined, several fundamental issues are still controversial: are the motor neurons the first direct targets of ALS; and what is the contribution of non-neuronal cells, if any, to the pathogenesis of ALS? The state of the art of ALS pathogenesis and the open questions are discussed in this review.
2010
01 Pubblicazione su rivista::01a Articolo in rivista
State of the art and the dark side of amyotrophic lateral sclerosis / Musaro', Antonio. - In: WORLD JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 1949-8454. - 1:5(2010), pp. 62-68. [10.4331/wjbc.v1.i5.62]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/104051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact