Recent findings suggest that processes such as the excitonic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, master-equation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining a local description of the complex network of molecules involved in the transport, say through a tight-binding approach. Interestingly, the continuous time random walk (CTRW) picture, widely employed in describing transport in random environments, can be mathematically reformulated to yield a quantum-mechanical Hamiltonian of tight-binding type; the procedure uses the mathematical analogies between time-evolution operators in statistical and in quantum mechanics: The result are continuous-time quantum walks (CTQWs). However, beyond these formal analogies, CTRWs and CTQWs display vastly different physical properties. In particular, here we focus on trapping processes on a ring and show, both analytically and numerically, that distinct configurations of traps (ranging from periodical to random) yield strongly different behaviors for the quantal mean survival probability, while classically (under ordered conditions) we always find an exponential decay at long times.

Continuous-time quantum walks and trapping / Agliari, Elena; Mã lken, Oliver; Blumen, Alexander. - In: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING. - ISSN 0218-1274. - STAMPA. - 20:2(2010), pp. 271-279. [10.1142/S0218127410025715]

Continuous-time quantum walks and trapping

Agliari, Elena;
2010

Abstract

Recent findings suggest that processes such as the excitonic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, master-equation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining a local description of the complex network of molecules involved in the transport, say through a tight-binding approach. Interestingly, the continuous time random walk (CTRW) picture, widely employed in describing transport in random environments, can be mathematically reformulated to yield a quantum-mechanical Hamiltonian of tight-binding type; the procedure uses the mathematical analogies between time-evolution operators in statistical and in quantum mechanics: The result are continuous-time quantum walks (CTQWs). However, beyond these formal analogies, CTRWs and CTQWs display vastly different physical properties. In particular, here we focus on trapping processes on a ring and show, both analytically and numerically, that distinct configurations of traps (ranging from periodical to random) yield strongly different behaviors for the quantal mean survival probability, while classically (under ordered conditions) we always find an exponential decay at long times.
2010
Exciton transport; Perturbation theory; Quantum walks; Random walks; Trapping; Modeling and Simulation; Engineering (all); Multidisciplinary; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Continuous-time quantum walks and trapping / Agliari, Elena; Mã lken, Oliver; Blumen, Alexander. - In: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING. - ISSN 0218-1274. - STAMPA. - 20:2(2010), pp. 271-279. [10.1142/S0218127410025715]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1039034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact