One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C[d] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work [B.Bakalov, A.D’Andrea, V.G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) 1–140]. In a series of papers, starting with the present one, we classify all irreducible finite modules over finite simple Lie pseudoalgebras.

Irreducible modules over finite simple pseudoalgebras I. Primitive pseudoalgebras of type W and S / B., Bakalov; D'Andrea, Alessandro; V. G., Kac. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 204:1(2006), pp. 278-346. [10.1016/j.aim.2005.07.003]

Irreducible modules over finite simple pseudoalgebras I. Primitive pseudoalgebras of type W and S

D'ANDREA, Alessandro;
2006

Abstract

One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C[d] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work [B.Bakalov, A.D’Andrea, V.G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) 1–140]. In a series of papers, starting with the present one, we classify all irreducible finite modules over finite simple Lie pseudoalgebras.
2006
Lie pseudoalgebra, Lie Cartan algebra of vector fields, Hopf algebra
01 Pubblicazione su rivista::01a Articolo in rivista
Irreducible modules over finite simple pseudoalgebras I. Primitive pseudoalgebras of type W and S / B., Bakalov; D'Andrea, Alessandro; V. G., Kac. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 204:1(2006), pp. 278-346. [10.1016/j.aim.2005.07.003]
File allegati a questo prodotto
File Dimensione Formato  
Bakalov_Irreducible-modules_2006.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 642.73 kB
Formato Adobe PDF
642.73 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/103868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact