In the hose model we are given upper bounds b(u)(-)/b(u)(+) on the amount of traffic entering/leaving a node. We show that when Sigma(u epsilon v)b(u)(+)=Sigma(nu epsilon v)b(u)(-), designing a minimum cost tree network is easy and the cost of an optimal tree reservation is within a factor of three of the cost of any reservation. (c) 2005 Elsevier B.V. All rights reserved.
Design of trees in the hose model: The balanced case / Giuseppe, Italiano; Leonardi, Stefano; Gianpaolo, Oriolo. - In: OPERATIONS RESEARCH LETTERS. - ISSN 0167-6377. - 34:6(2006), pp. 601-606. [10.1016/j.orl.2005.09.005]
Design of trees in the hose model: The balanced case
LEONARDI, Stefano;
2006
Abstract
In the hose model we are given upper bounds b(u)(-)/b(u)(+) on the amount of traffic entering/leaving a node. We show that when Sigma(u epsilon v)b(u)(+)=Sigma(nu epsilon v)b(u)(-), designing a minimum cost tree network is easy and the cost of an optimal tree reservation is within a factor of three of the cost of any reservation. (c) 2005 Elsevier B.V. All rights reserved.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
VE_2006_11573-103830.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
179.72 kB
Formato
Adobe PDF
|
179.72 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.