In this paper, we present an optoelectronic system-on-glass (SoG), suitable for detection of fluorescent molecule. It integrates, on the same glass substrate, an array of amorphous silicon (a-Si:H) photosensors and a thin film interferential filter. The system can be directly coupled with another glass substrate hosting a polydimethylsiloxane based microfluidic network where the fluorescent phenomena occur. The compatibility of the different technological steps to attain on the same glass substrate the photosensors and the filter determined the sequence, the selection of materials and the deposition parameters of the whole process. The electro-optical characterization of the photodiode, performed after the filter deposition, demonstrated the efficacy of the filter in reducing the excitation light. The system has been successfully tested using the ruthenium complex [Ru(phen)2(dppz)]2+, a fluorescent dye which works as DNA intercalating molecule.
Optoelectronic System-on-Glass for On-Chip Detection of Fluorescence / Lovecchio, N.; Costantini, F.; Nardecchia, M.; Petrucci, G.; Tucci, M.; Mangiapane, P.; Nascetti, A.; de Cesare, G.; Caputo, D.. - STAMPA. - 457:(2018), pp. 143-149. (Intervento presentato al convegno 19th AISEM National Conference on Sensors and Microsystems, 2017 tenutosi a Lecce; Italy nel 21-23 February 2017) [10.1007/978-3-319-66802-4_20].
Optoelectronic System-on-Glass for On-Chip Detection of Fluorescence
Lovecchio, N.;Costantini, F.;Nardecchia, M.;Petrucci, G.;Nascetti, A.;de Cesare, G.;Caputo, D.
2018
Abstract
In this paper, we present an optoelectronic system-on-glass (SoG), suitable for detection of fluorescent molecule. It integrates, on the same glass substrate, an array of amorphous silicon (a-Si:H) photosensors and a thin film interferential filter. The system can be directly coupled with another glass substrate hosting a polydimethylsiloxane based microfluidic network where the fluorescent phenomena occur. The compatibility of the different technological steps to attain on the same glass substrate the photosensors and the filter determined the sequence, the selection of materials and the deposition parameters of the whole process. The electro-optical characterization of the photodiode, performed after the filter deposition, demonstrated the efficacy of the filter in reducing the excitation light. The system has been successfully tested using the ruthenium complex [Ru(phen)2(dppz)]2+, a fluorescent dye which works as DNA intercalating molecule.File | Dimensione | Formato | |
---|---|---|---|
Lovecchio_Optoelectronic_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
233.3 kB
Formato
Adobe PDF
|
233.3 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.