In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a micro uidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from ‘wild type’ donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative con rmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems.

Organs on chip approach: A tool to evaluate cancer-immune cells interactions / Biselli, Elena; Agliari, Elena; Barra, Adriano; Bertani, FRANCESCA ROMANA; Gerardino, Annamaria; De Ninno, Adele; Mencattini, Arianna; Di Giuseppe, Davide; Mattei, Fabrizio; Schiavoni, Giovanna; Lucarini, Valeria; Vacchelli, Erika; Kroemer, Guido; Di Natale, Corrado; Martinelli, Eugenio; Businaro, Luca. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:1(2017), p. 12737. [10.1038/s41598-017-13070-3]

Organs on chip approach: A tool to evaluate cancer-immune cells interactions

Agliari, Elena;BERTANI, FRANCESCA ROMANA;De Ninno, Adele;Mattei, Fabrizio;Schiavoni, Giovanna;Lucarini, Valeria;
2017

Abstract

In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a micro uidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from ‘wild type’ donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative con rmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems.
2017
multidisciplinary
01 Pubblicazione su rivista::01a Articolo in rivista
Organs on chip approach: A tool to evaluate cancer-immune cells interactions / Biselli, Elena; Agliari, Elena; Barra, Adriano; Bertani, FRANCESCA ROMANA; Gerardino, Annamaria; De Ninno, Adele; Mencattini, Arianna; Di Giuseppe, Davide; Mattei, Fabrizio; Schiavoni, Giovanna; Lucarini, Valeria; Vacchelli, Erika; Kroemer, Guido; Di Natale, Corrado; Martinelli, Eugenio; Businaro, Luca. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:1(2017), p. 12737. [10.1038/s41598-017-13070-3]
File allegati a questo prodotto
File Dimensione Formato  
Biselli_Organs-on-chip_2107.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1032717
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 64
social impact