The 1-harmonic flow from the disk to the sphere with constant Dirichlet boundary conditions is analyzed in the case of rotational symmetry. Sufficient conditions on the initial datum are given, such that a unique classical solution exists for short times. Also, a sharp criterion on the boundary condition is identified, such that any classical solution will blow up in finite time. Finally, nongeneric examples of finite time blowup are exhibited for any boundary condition. © 2010 Society for Industrial and Applied Mathematics.

Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup / Giacomelli, Lorenzo; Salvador, Moll. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 42:6(2010), pp. 2791-2817. [10.1137/090764293]

Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup

GIACOMELLI, Lorenzo;
2010

Abstract

The 1-harmonic flow from the disk to the sphere with constant Dirichlet boundary conditions is analyzed in the case of rotational symmetry. Sufficient conditions on the initial datum are given, such that a unique classical solution exists for short times. Also, a sharp criterion on the boundary condition is identified, such that any classical solution will blow up in finite time. Finally, nongeneric examples of finite time blowup are exhibited for any boundary condition. © 2010 Society for Industrial and Applied Mathematics.
2010
ferromagnetism; blowup; 1-harmonic flow; image processing; local existence; dirichlet problem; partial differential equations; rotational symmetry
01 Pubblicazione su rivista::01a Articolo in rivista
Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup / Giacomelli, Lorenzo; Salvador, Moll. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 42:6(2010), pp. 2791-2817. [10.1137/090764293]
File allegati a questo prodotto
File Dimensione Formato  
gm.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 319.59 kB
Formato Adobe PDF
319.59 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/102885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact