The problem of a relativistic bound-state system consisting of two scalar bosons interacting through the exchange of another scalar boson, in 2+1 space-time dimensions, has been studied. The Bethe-Salpeter equation (BSE) was solved by adopting the Nakanishi integral representation (NIR) and the Light-Front projection. The NIR allows us to solve the BSE in Minkowski space, which is a big and important challenge, since most of non-perturbative calculations are done in Euclidean space, e.g. Lattice and Schwinger-Dyson calculations. We have in this work adopted an interaction kernel containing the ladder and cross-ladder exchanges. In order to check that the NIR is also a good representation in 2+1, the coupling constants and Wick-rotated amplitudes have been computed and compared with calculations performed in Euclidean space. Very good agreement between the calculations performed in the Minkowski and Euclidean spaces has been found. This is an important consistence test that allows Minkowski calculations with the Nakanishi representation in 2+1 dimensions. This relativistic approach will allow us to perform applications in condensed matter problems in a near future.

The problem of a relativistic bound-state system consisting of two scalar bosons interacting through the exchange of another scalar boson, in 2+1 space-time dimensions, has been studied. The Bethe-Salpeter equation (BSE) was solved by adopting the Nakanishi integral representation (NIR) and the Light-Front projection. The NIR allows us to solve the BSE in Minkowski space, which is a big and important challenge, since most of non-perturbative calculations are done in Euclidean space, e.g. Lattice and Schwinger-Dyson calculations. We have in this work adopted an interaction kernel containing the ladder and cross-ladder exchanges. In order to check that the NIR is also a good representation in 2+1, the coupling constants and Wick-rotated amplitudes have been computed and compared with calculations performed in Euclidean space. Very good agreement between the calculations performed in the Minkowski and Euclidean spaces has been found. This is an important consistence test that allows Minkowski calculations with the Nakanishi representation in 2+1 dimensions. This relativistic approach will allow us to perform applications in condensed matter problems in a near future.

Study of the Homogeneous Bethe-Salpeter Equation in the 2+1 Minkowski Space / Gigante, Vitor; Alvarenga Nogueira, Jorge H.; Ydrefors, Emanuel; Gutierrez, Cristian. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS CONFERENCE SERIES. - ISSN 2010-1945. - 45(2017). [10.1142/S2010194517600552]

Study of the Homogeneous Bethe-Salpeter Equation in the 2+1 Minkowski Space

Alvarenga Nogueira, Jorge H.;
2017

Abstract

The problem of a relativistic bound-state system consisting of two scalar bosons interacting through the exchange of another scalar boson, in 2+1 space-time dimensions, has been studied. The Bethe-Salpeter equation (BSE) was solved by adopting the Nakanishi integral representation (NIR) and the Light-Front projection. The NIR allows us to solve the BSE in Minkowski space, which is a big and important challenge, since most of non-perturbative calculations are done in Euclidean space, e.g. Lattice and Schwinger-Dyson calculations. We have in this work adopted an interaction kernel containing the ladder and cross-ladder exchanges. In order to check that the NIR is also a good representation in 2+1, the coupling constants and Wick-rotated amplitudes have been computed and compared with calculations performed in Euclidean space. Very good agreement between the calculations performed in the Minkowski and Euclidean spaces has been found. This is an important consistence test that allows Minkowski calculations with the Nakanishi representation in 2+1 dimensions. This relativistic approach will allow us to perform applications in condensed matter problems in a near future.
The problem of a relativistic bound-state system consisting of two scalar bosons interacting through the exchange of another scalar boson, in 2+1 space-time dimensions, has been studied. The Bethe-Salpeter equation (BSE) was solved by adopting the Nakanishi integral representation (NIR) and the Light-Front projection. The NIR allows us to solve the BSE in Minkowski space, which is a big and important challenge, since most of non-perturbative calculations are done in Euclidean space, e.g. Lattice and Schwinger-Dyson calculations. We have in this work adopted an interaction kernel containing the ladder and cross-ladder exchanges. In order to check that the NIR is also a good representation in 2+1, the coupling constants and Wick-rotated amplitudes have been computed and compared with calculations performed in Euclidean space. Very good agreement between the calculations performed in the Minkowski and Euclidean spaces has been found. This is an important consistence test that allows Minkowski calculations with the Nakanishi representation in 2+1 dimensions. This relativistic approach will allow us to perform applications in condensed matter problems in a near future.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1027755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact