The paper presents a method for color quantization (CQ)which uses visual contrast for determining an image-dependent colorpalette. The proposed method selects image regions in a hierarchicalway, according to the visual importance of their colors with respect to thewhole image. The method is automatic, image dependent and requires amoderate computational effort. Preliminary results show that the qual-ity of quantized images, measured in terms of Mean Square Error, ColorLoss and SSIM, is competitive with some existing CQ approaches.

Perceptual-based color quantization / Bruni, Vittoria; Ramella, Giuliana; Vitulano, Domenico. - STAMPA. - 10484:(2017), pp. 671-681. (Intervento presentato al convegno 19th International Conference on Image Analysis and Processing, ICIAP 2017 tenutosi a ita nel 2017) [10.1007/978-3-319-68560-1_60].

Perceptual-based color quantization

Bruni, Vittoria;Vitulano, Domenico
2017

Abstract

The paper presents a method for color quantization (CQ)which uses visual contrast for determining an image-dependent colorpalette. The proposed method selects image regions in a hierarchicalway, according to the visual importance of their colors with respect to thewhole image. The method is automatic, image dependent and requires amoderate computational effort. Preliminary results show that the qual-ity of quantized images, measured in terms of Mean Square Error, ColorLoss and SSIM, is competitive with some existing CQ approaches.
2017
19th International Conference on Image Analysis and Processing, ICIAP 2017
Color quantization; Human visual system; RGB color space; Visual contrast; Theoretical Computer Science; Computer Science (all)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Perceptual-based color quantization / Bruni, Vittoria; Ramella, Giuliana; Vitulano, Domenico. - STAMPA. - 10484:(2017), pp. 671-681. (Intervento presentato al convegno 19th International Conference on Image Analysis and Processing, ICIAP 2017 tenutosi a ita nel 2017) [10.1007/978-3-319-68560-1_60].
File allegati a questo prodotto
File Dimensione Formato  
BruniICIAP2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Altra licenza (allegare)
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1027254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact