Integrated photonic circuits with many input and output modes are essential in applications ranging from conventional optical telecommunication networks, to the elaboration of photonic qubits in the integrated quantum information framework. In particular, the latter field has been object in the recent years of an increasing interest: the compactness and phase stability of integrated waveguide circuits are enabling experiments unconceivable with bulk-optics set-ups. Linear photonic devices for quantum information are based on quantum and classical interference effects: the desired circuit operation can be achieved only with tight fabrication control on both power repartition in splitting elements and phase retardance in the various paths. Here we report on a novel three-dimensional circuit architecture, made possible by the unique capabilities of femtosecond laser waveguide writing, which enables us to realize integrated multimode devices implementing arbitrary linear transformations. Networks of cascaded directional couplers can be built with independent control on the splitting ratios and the phase shifts in each branch. In detail, we show an arbitrarily designed 5×5 integrated interferometer: characterization with one- and two-photon experiments confirms the accuracy of our fabrication technique. We exploit the fabricated circuit to implement a small instance of the boson-sampling experiments with up to three photons, which is one of the most promising approaches to realize phenomena hard to simulate with classical computers. We will further show how, by studying classical and quantum interference in many random multimode circuits, we may gain deeper insight into the bosonic coalescence phenomenon. © 2014 SPIE.

Arbitrary integrated multimode interferometers for the elaboration of photonic qubits / Crespi, Andrea; Ramponi, Roberta; Brod, Daniel J.; Galvao, Ernesto F.; Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Osellame, Roberto. - ELETTRONICO. - 8972:(2014), p. 89720V. (Intervento presentato al convegno Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV tenutosi a San Francisco; USA nel 02 - 05 Feb 2014) [10.1117/12.2039210].

Arbitrary integrated multimode interferometers for the elaboration of photonic qubits

Spagnolo, Nicolò;Vitelli, Chiara;Sansoni, Linda;Sciarrino, Fabio;Mataloni, Paolo;
2014

Abstract

Integrated photonic circuits with many input and output modes are essential in applications ranging from conventional optical telecommunication networks, to the elaboration of photonic qubits in the integrated quantum information framework. In particular, the latter field has been object in the recent years of an increasing interest: the compactness and phase stability of integrated waveguide circuits are enabling experiments unconceivable with bulk-optics set-ups. Linear photonic devices for quantum information are based on quantum and classical interference effects: the desired circuit operation can be achieved only with tight fabrication control on both power repartition in splitting elements and phase retardance in the various paths. Here we report on a novel three-dimensional circuit architecture, made possible by the unique capabilities of femtosecond laser waveguide writing, which enables us to realize integrated multimode devices implementing arbitrary linear transformations. Networks of cascaded directional couplers can be built with independent control on the splitting ratios and the phase shifts in each branch. In detail, we show an arbitrarily designed 5×5 integrated interferometer: characterization with one- and two-photon experiments confirms the accuracy of our fabrication technique. We exploit the fabricated circuit to implement a small instance of the boson-sampling experiments with up to three photons, which is one of the most promising approaches to realize phenomena hard to simulate with classical computers. We will further show how, by studying classical and quantum interference in many random multimode circuits, we may gain deeper insight into the bosonic coalescence phenomenon. © 2014 SPIE.
2014
Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV
Boson sampling; Femtosecond laser writing; Integrated optics; Quantum photonics; Applied Mathematics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic Engineering; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Arbitrary integrated multimode interferometers for the elaboration of photonic qubits / Crespi, Andrea; Ramponi, Roberta; Brod, Daniel J.; Galvao, Ernesto F.; Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Osellame, Roberto. - ELETTRONICO. - 8972:(2014), p. 89720V. (Intervento presentato al convegno Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV tenutosi a San Francisco; USA nel 02 - 05 Feb 2014) [10.1117/12.2039210].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1025656
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact