Seismic precursors are an as yet unattained frontier in earthquake studies. With the aim of making a step towards this frontier, we present a hydrogeochemical dataset associated with the 2016 Amatrice- Norcia seismic sequence (central Apennines, Italy), developed from August 24th, with an Mw 6.0 event, and culminating on October 30th, with an Mw 6.5 mainshock. The seismic sequence occurred during a seasonal depletion of hydrostructures, and the four strongest earthquakes (Mw ≥ 5.5) generated an abrupt uplift of the water level, recorded up to 100 km away from the mainshock area. Monitoring a set of selected springs in the central Apennines, a few hydrogeochemical anomalies were observed months before the onset of the seismic swarm, including a variation of pH values and an increase of As, V, and Fe concentrations. Cr concentrations increased immediately after the onset of the seismic sequence. On November 2016, these elements recovered to their usual low concentrations. We interpret these geochemical anomalies as reliable seismic precursors for a dilational tectonic setting.
Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy) / Barberio, Marino Domenico; Barbieri, Maurizio; Billi, Andrea; Doglioni, Carlo; Petitta, Marco. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:Issue 1(2017). [10.1038/s41598-017-11990-8]
Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy)
Barberio, Marino Domenico;Barbieri, MaurizioMembro del Collaboration Group
;Doglioni, Carlo;Petitta, Marco
2017
Abstract
Seismic precursors are an as yet unattained frontier in earthquake studies. With the aim of making a step towards this frontier, we present a hydrogeochemical dataset associated with the 2016 Amatrice- Norcia seismic sequence (central Apennines, Italy), developed from August 24th, with an Mw 6.0 event, and culminating on October 30th, with an Mw 6.5 mainshock. The seismic sequence occurred during a seasonal depletion of hydrostructures, and the four strongest earthquakes (Mw ≥ 5.5) generated an abrupt uplift of the water level, recorded up to 100 km away from the mainshock area. Monitoring a set of selected springs in the central Apennines, a few hydrogeochemical anomalies were observed months before the onset of the seismic swarm, including a variation of pH values and an increase of As, V, and Fe concentrations. Cr concentrations increased immediately after the onset of the seismic sequence. On November 2016, these elements recovered to their usual low concentrations. We interpret these geochemical anomalies as reliable seismic precursors for a dilational tectonic setting.File | Dimensione | Formato | |
---|---|---|---|
Barberio_Hydrogeochemical_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.