We consider the linear Boltzmann transport equation (LBTE) in a 2D strip. We present a Monte Carlo algorithm to directly simulate the motion of single particles following the dynamics prescribed by this equation. We construct the stationary solution of the LBTE in presence of large reflective obstacles in the strip. We compare the simulation steady state with that one obtained as stationary profile of the diffusion equation with mixed boundary conditions on the strip. We present the results of some numerical tests and we show the closeness of the two stationary solutions in the diffusive limit and the efficacy of our algorithm. We introduce the concept of residence time of particles, that is the typical time spent by particles to cross the strip. We show by a numerical simulation that in presence of obstacles the residence time is not monotonic with respect to the obstacles sizes.

On the linear Boltzmann transport equation: a Monte Carlo algorithm for stationary solutions and residence times in presence of obstacles / Ciallella, Alessandro. - ELETTRONICO. - 2:(2017), pp. 952-960. ((Intervento presentato al convegno AIMETA 2017 tenutosi a Salerno nel 04/07 settembre 2017.

On the linear Boltzmann transport equation: a Monte Carlo algorithm for stationary solutions and residence times in presence of obstacles.

CIALLELLA, ALESSANDRO
2017

Abstract

We consider the linear Boltzmann transport equation (LBTE) in a 2D strip. We present a Monte Carlo algorithm to directly simulate the motion of single particles following the dynamics prescribed by this equation. We construct the stationary solution of the LBTE in presence of large reflective obstacles in the strip. We compare the simulation steady state with that one obtained as stationary profile of the diffusion equation with mixed boundary conditions on the strip. We present the results of some numerical tests and we show the closeness of the two stationary solutions in the diffusive limit and the efficacy of our algorithm. We introduce the concept of residence time of particles, that is the typical time spent by particles to cross the strip. We show by a numerical simulation that in presence of obstacles the residence time is not monotonic with respect to the obstacles sizes.
AIMETA 2017
Linear Boltzmann Transport Equation, Monte Carlo Methods, Stationary Linear Boltzmann, Diffusive Limit, Residence Time, Reflective Obstacles
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On the linear Boltzmann transport equation: a Monte Carlo algorithm for stationary solutions and residence times in presence of obstacles / Ciallella, Alessandro. - ELETTRONICO. - 2:(2017), pp. 952-960. ((Intervento presentato al convegno AIMETA 2017 tenutosi a Salerno nel 04/07 settembre 2017.
File allegati a questo prodotto
File Dimensione Formato  
AIMETA_2017_index.pdf

solo gestori archivio

Note: http://www.aimeta2017.unisa.it/node/52
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1022098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact