The investigation of multi-photon quantum interference in symmetric multi-port splitters has both fundamental and applicative interest. Destructive quantum interference in devices with specific symmetry leads to the suppression of a large number of possible output states, generalizing the Hong-Ou-Mandel effect; simple suppression laws have been developed for interferometers implementing the Fourier or the Hadamard transform over the modes. In fact, these enhanced interference features in the output distribution can be used to assess the indistinguishability of single-photon sources, and symmetric interferometers have been envisaged as benchmark or validation devices for Boson-Sampling machines. In this work we devise an innovative approach to implement symmetric multi-mode interferometers that realize the Fourier and Hadamard transform over the optical modes, exploiting integrated waveguide circuits. Our design is based on the optical implementations of the Fast-Fourier and Fast-Hadamard transform algorithms, and exploits a novel three-dimensional layout which is made possible by the unique capabilities of femtosecond laser waveguide writing. We fabricate devices with m = 4 and m = 8 modes and we let two identical photons evolve in the circuit. By characterizing the coincidence output distribution we are able to observe experimentally the known suppression laws for the output states. In particular, we characterize the robustness of this approach to assess the photons' indistinguishability and to rule out alternative non-quantum states of light. The reported results pave the way to the adoption of symmetric multiport interferometers as pivotal tools in the diagnostics and certification of quantum photonic platforms. © 2017 SPIE.

Observing quantum interference in 3D integrated-photonic symmetric multiports / Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio. - ELETTRONICO. - 10106:(2017), p. 101061C. (Intervento presentato al convegno Integrated Optics: Devices, Materials, and Technologies XXI 2017 tenutosi a San Francisco, CA, USA nel 30 Jan - 01 Feb 2017) [10.1117/12.2250791].

Observing quantum interference in 3D integrated-photonic symmetric multiports

Bentivegna, Marco;Flamini, Fulvio;Spagnolo, Nicolò;Viggianiello, Niko;Mataloni, Paolo;Sciarrino, Fabio
2017

Abstract

The investigation of multi-photon quantum interference in symmetric multi-port splitters has both fundamental and applicative interest. Destructive quantum interference in devices with specific symmetry leads to the suppression of a large number of possible output states, generalizing the Hong-Ou-Mandel effect; simple suppression laws have been developed for interferometers implementing the Fourier or the Hadamard transform over the modes. In fact, these enhanced interference features in the output distribution can be used to assess the indistinguishability of single-photon sources, and symmetric interferometers have been envisaged as benchmark or validation devices for Boson-Sampling machines. In this work we devise an innovative approach to implement symmetric multi-mode interferometers that realize the Fourier and Hadamard transform over the optical modes, exploiting integrated waveguide circuits. Our design is based on the optical implementations of the Fast-Fourier and Fast-Hadamard transform algorithms, and exploits a novel three-dimensional layout which is made possible by the unique capabilities of femtosecond laser waveguide writing. We fabricate devices with m = 4 and m = 8 modes and we let two identical photons evolve in the circuit. By characterizing the coincidence output distribution we are able to observe experimentally the known suppression laws for the output states. In particular, we characterize the robustness of this approach to assess the photons' indistinguishability and to rule out alternative non-quantum states of light. The reported results pave the way to the adoption of symmetric multiport interferometers as pivotal tools in the diagnostics and certification of quantum photonic platforms. © 2017 SPIE.
2017
Integrated Optics: Devices, Materials, and Technologies XXI 2017
Femtosecond laser micromachining; Integrated optics; Multimode interferometer; Quantum interference; Quantum photonics; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Observing quantum interference in 3D integrated-photonic symmetric multiports / Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio. - ELETTRONICO. - 10106:(2017), p. 101061C. (Intervento presentato al convegno Integrated Optics: Devices, Materials, and Technologies XXI 2017 tenutosi a San Francisco, CA, USA nel 30 Jan - 01 Feb 2017) [10.1117/12.2250791].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1020806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact