We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By comparing theory with numerical simulations we demonstrate that the theoretical probability density quantitatively describes the accumulation of active particles around repulsive obstacles. In particular, for two particles with repulsive interactions, the probability of close contact decreases when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the radial density profile shows a non trivial scaling with radius. Finally we show that the theory well approximates the “pressure” generated by the active particles allowing to derive an equation of state for a system of non-interacting colored noise-driven particles.

Multidimensional stationary probability distribution for interacting active particles / Maggi, Claudio; Marconi, Umberto Marini Bettolo; Gnan, Nicoletta; Di Leonardo, Roberto. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 5:1(2015), p. 10742. [10.1038/srep10742]

Multidimensional stationary probability distribution for interacting active particles

Maggi, Claudio;Gnan, Nicoletta;Di Leonardo, Roberto
2015

Abstract

We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By comparing theory with numerical simulations we demonstrate that the theoretical probability density quantitatively describes the accumulation of active particles around repulsive obstacles. In particular, for two particles with repulsive interactions, the probability of close contact decreases when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the radial density profile shows a non trivial scaling with radius. Finally we show that the theory well approximates the “pressure” generated by the active particles allowing to derive an equation of state for a system of non-interacting colored noise-driven particles.
2015
Multidisciplinary
01 Pubblicazione su rivista::01a Articolo in rivista
Multidimensional stationary probability distribution for interacting active particles / Maggi, Claudio; Marconi, Umberto Marini Bettolo; Gnan, Nicoletta; Di Leonardo, Roberto. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 5:1(2015), p. 10742. [10.1038/srep10742]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1020587
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 146
  • ???jsp.display-item.citation.isi??? 166
social impact