Topological link prediction is the task of assessing the likelihood of new future links based on topological properties of entities in a network at a given time. In this paper, we introduce a multistrain bacterial diffusion model for link prediction, where the ranking of candidate links is based on the mutual transfer of bacteria strains via physical social contact. The model incorporates parameters like efficiency of the receiver surface, reproduction rate and number of social contacts. The basic idea is that entities continuously infect their neighborhood with their own bacteria strains, and such infections are iteratively propagated on the social network over time. The probability of transmission can be evaluated in terms of strains, reproduction, previous transfer, surface transfer efficiency, number of direct social contacts i.e. neighbors, multiple paths between entities. The value of the mutual strains of infection between a pair of entities is used to rank the potential arcs joining the entity nodes. The proposed multistrain diffusion model and mutual-strain infection ranking technique have been implemented and tested on widely accepted social network data sets. Experiments show that the MSDM-LP and mutual-strain diffusion ranking technique outperforms state-of-the-art algorithms for neighbor-based ranking.

A Multistrain Bacterial Diffusion Model for Link Prediction / Franzoni, Valentina; Chiancone, Andrea; Milani, Alfredo. - In: INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE. - ISSN 0218-0014. - ELETTRONICO. - 31:11(2017). [10.1142/S0218001417590248]

A Multistrain Bacterial Diffusion Model for Link Prediction

Franzoni, Valentina;
2017

Abstract

Topological link prediction is the task of assessing the likelihood of new future links based on topological properties of entities in a network at a given time. In this paper, we introduce a multistrain bacterial diffusion model for link prediction, where the ranking of candidate links is based on the mutual transfer of bacteria strains via physical social contact. The model incorporates parameters like efficiency of the receiver surface, reproduction rate and number of social contacts. The basic idea is that entities continuously infect their neighborhood with their own bacteria strains, and such infections are iteratively propagated on the social network over time. The probability of transmission can be evaluated in terms of strains, reproduction, previous transfer, surface transfer efficiency, number of direct social contacts i.e. neighbors, multiple paths between entities. The value of the mutual strains of infection between a pair of entities is used to rank the potential arcs joining the entity nodes. The proposed multistrain diffusion model and mutual-strain infection ranking technique have been implemented and tested on widely accepted social network data sets. Experiments show that the MSDM-LP and mutual-strain diffusion ranking technique outperforms state-of-the-art algorithms for neighbor-based ranking.
2017
bacterial diffusion; complex networks; Link prediction; MSDM-LP; nature-inspired computation; ranking algorithms; social network analysis; Software; 1707; Artificial Intelligence
01 Pubblicazione su rivista::01a Articolo in rivista
A Multistrain Bacterial Diffusion Model for Link Prediction / Franzoni, Valentina; Chiancone, Andrea; Milani, Alfredo. - In: INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE. - ISSN 0218-0014. - ELETTRONICO. - 31:11(2017). [10.1142/S0218001417590248]
File allegati a questo prodotto
File Dimensione Formato  
Franzoni_A-Multistrain-Bacterial_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.51 MB
Formato Adobe PDF
6.51 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1020457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact