Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics – hereditable changes of chromatin that do not alter the DNA sequence itself – is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs.

Givinostat reduces adverse cardiac remodeling regulating fibroblasts activation / Milan, Marika; Pace, Valentina; Maiullari, Fabio; Chirivi', Maila; Baci, Denisa; Maiullari, Silvia; Madaro, Luca; Maccari, Sonia; Stati, Tonino; Marano, Giuseppe; Frati, Giacomo; Lorenzo Puri, Pier; De Falco, Elena; Bearzi, Claudia; Rizzi, Roberto. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - ELETTRONICO. - 9:2(2018), pp. 1-17. [10.1038/s41419-017-0174-5]

Givinostat reduces adverse cardiac remodeling regulating fibroblasts activation

Marika Milan;Valentina Pace;Maila Chirivì;Luca Madaro;Giacomo Frati;Elena De Falco;Roberto Rizzi
2018

Abstract

Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics – hereditable changes of chromatin that do not alter the DNA sequence itself – is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs.
2018
givinostat; cardiac; fibroblasts
01 Pubblicazione su rivista::01a Articolo in rivista
Givinostat reduces adverse cardiac remodeling regulating fibroblasts activation / Milan, Marika; Pace, Valentina; Maiullari, Fabio; Chirivi', Maila; Baci, Denisa; Maiullari, Silvia; Madaro, Luca; Maccari, Sonia; Stati, Tonino; Marano, Giuseppe; Frati, Giacomo; Lorenzo Puri, Pier; De Falco, Elena; Bearzi, Claudia; Rizzi, Roberto. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - ELETTRONICO. - 9:2(2018), pp. 1-17. [10.1038/s41419-017-0174-5]
File allegati a questo prodotto
File Dimensione Formato  
Milan_Givinostat_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.57 MB
Formato Adobe PDF
3.57 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1020415
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact