We describe a simple method for making inference on a functional of a multivariate distribution, based on its copula representation. We make use of an approximate Bayesian Monte Carlo algorithm, where the proposed values of the functional of interest are weighted in terms of their Bayesian exponentially tilted empirical likelihood. This method is particularly useful when the “true” likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.

Approximate Bayesian inference in semiparametric copula models / Liseo, Brunero; Grazian, Clara. - In: BAYESIAN ANALYSIS. - ISSN 1936-0975. - STAMPA. - 12:4(2017), pp. 991-1016. [10.1214/17-BA1080]

Approximate Bayesian inference in semiparametric copula models

Liseo Brunero;
2017

Abstract

We describe a simple method for making inference on a functional of a multivariate distribution, based on its copula representation. We make use of an approximate Bayesian Monte Carlo algorithm, where the proposed values of the functional of interest are weighted in terms of their Bayesian exponentially tilted empirical likelihood. This method is particularly useful when the “true” likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.
2017
multivariate dependence ; Bayesian exponentially tilted empiricallikelihood ; Spearman’s ρ ; tail dependence coefficients ; partially specified models
01 Pubblicazione su rivista::01a Articolo in rivista
Approximate Bayesian inference in semiparametric copula models / Liseo, Brunero; Grazian, Clara. - In: BAYESIAN ANALYSIS. - ISSN 1936-0975. - STAMPA. - 12:4(2017), pp. 991-1016. [10.1214/17-BA1080]
File allegati a questo prodotto
File Dimensione Formato  
Liseo_Approximate-Bayesian-Inference_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 803.64 kB
Formato Adobe PDF
803.64 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1018071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact