The automatic distinction (domain separation) between handwriting (textual domain) and freehand drawing (graphical domain) elements into the same layer is a topic of great interest that still requires further investigation. This paper describes a machine learning based approach for the online separation of domain elements. The proposed approach presents two main innovative contributions. First, a new set of discriminative features is presented. Second, the use of a Support Vector Machine (SVM) classifier to properly separate the different elements. Experimental results on a wide range of application domains show the robustness of the proposed method and prove the validity of the proposed approach.

A Machine Learning Approach for the Online Separation of Handwriting from Freehand Drawing / Avola, Danilo; Bernardi, Marco; Cinque, Luigi; Foresti, Gian Luca; Marini, MARCO RAOUL; Massaroni, Cristiano. - STAMPA. - 10484:(2017), pp. 223-232. (Intervento presentato al convegno Image Analysis and Processing - ICIAP 2017 tenutosi a Catania, Italy) [10.1007/978-3-319-68560-1_20].

A Machine Learning Approach for the Online Separation of Handwriting from Freehand Drawing

Avola, Danilo;Bernardi, Marco;Cinque, Luigi;MARINI, MARCO RAOUL;Massaroni, Cristiano
2017

Abstract

The automatic distinction (domain separation) between handwriting (textual domain) and freehand drawing (graphical domain) elements into the same layer is a topic of great interest that still requires further investigation. This paper describes a machine learning based approach for the online separation of domain elements. The proposed approach presents two main innovative contributions. First, a new set of discriminative features is presented. Second, the use of a Support Vector Machine (SVM) classifier to properly separate the different elements. Experimental results on a wide range of application domains show the robustness of the proposed method and prove the validity of the proposed approach.
2017
Image Analysis and Processing - ICIAP 2017
Domain separation; Handwriting; Textual domain; Freehand drawing; Graphical domain; SVM classifier
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Machine Learning Approach for the Online Separation of Handwriting from Freehand Drawing / Avola, Danilo; Bernardi, Marco; Cinque, Luigi; Foresti, Gian Luca; Marini, MARCO RAOUL; Massaroni, Cristiano. - STAMPA. - 10484:(2017), pp. 223-232. (Intervento presentato al convegno Image Analysis and Processing - ICIAP 2017 tenutosi a Catania, Italy) [10.1007/978-3-319-68560-1_20].
File allegati a questo prodotto
File Dimensione Formato  
Avola_Handwriting_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1017984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact