We present a novel framework for the automatic discovery and recognition of human motion primitives from motion capture data. Human motion primitives are discovered by optimizing the 'motion flux', a quantity which depends on the motion of a group of skeletal joints. Models of each primitive category are computed via non-parametric Bayes methods and recognition is performed based on their geometric properties. A normalization of the primitives is proposed in order to make them invariant with respect to anatomical variations and data sampling rate. Using our framework we build a publicly available dataset of human motion primitives based on motion capture sequences taken from well-known datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields related to Robotics including human inspired motion generation, learning by demonstration, and intuitive human-robot interaction.

Human motion primitive discovery and recognition / Sanzari, Marta; Ntouskos, Valsamis; Grazioso, Simone; Puja, Francesco; Fiora, Pirri. - ELETTRONICO. - (2017).

Human motion primitive discovery and recognition

Marta Sanzari;Valsamis Ntouskos
;
GRAZIOSO, SIMONE;Francesco Puja;Fiora Pirri
2017

Abstract

We present a novel framework for the automatic discovery and recognition of human motion primitives from motion capture data. Human motion primitives are discovered by optimizing the 'motion flux', a quantity which depends on the motion of a group of skeletal joints. Models of each primitive category are computed via non-parametric Bayes methods and recognition is performed based on their geometric properties. A normalization of the primitives is proposed in order to make them invariant with respect to anatomical variations and data sampling rate. Using our framework we build a publicly available dataset of human motion primitives based on motion capture sequences taken from well-known datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields related to Robotics including human inspired motion generation, learning by demonstration, and intuitive human-robot interaction.
2017
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1016037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact