In this article we consider the Keller-Segel model for chemotaxis on networks, both in the doubly parabolic case and in the parabolic-elliptic one. Introducing appropriate transition conditions at vertices, we prove the existence of a time global and spatially continuous solution for each of the two systems. The main tool we use in the proof of the existence result are optimal decay estimates for the fundamental solution of the heat equation on a weighted network.
Parabolic models for chemotaxis on weighted networks / Camilli, Fabio; Corrias, Lucilla. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 108:4(2017), pp. 459-480. [10.1016/j.matpur.2017.07.003]
Parabolic models for chemotaxis on weighted networks
Camilli, Fabio
;
2017
Abstract
In this article we consider the Keller-Segel model for chemotaxis on networks, both in the doubly parabolic case and in the parabolic-elliptic one. Introducing appropriate transition conditions at vertices, we prove the existence of a time global and spatially continuous solution for each of the two systems. The main tool we use in the proof of the existence result are optimal decay estimates for the fundamental solution of the heat equation on a weighted network.File | Dimensione | Formato | |
---|---|---|---|
1511.07279.pdf
solo utenti autorizzati
Note: JMPA.pdf
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
289.85 kB
Formato
Adobe PDF
|
289.85 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.