We study a quasi-linear evolution equation with nonlinear dynami- cal boundary conditions in a two dimensional domain with Koch-type fractal boundary. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uni- queness results via standard semigroup approach, we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco con- vergence of the energy functionals adapted by T ̈olle to the nonlinear framework in varying Hilbert spaces.
Approximation of a nonlinear fractal energy functional on varying hilbert spaces / Creo, Simone; Lancia, Maria Rosaria; Velez-santiago, A.; Vernole, Paola. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - STAMPA. - 17:(2018), pp. 647-669. [doi:10.3934/cpaa.2018035]
Approximation of a nonlinear fractal energy functional on varying hilbert spaces
CREO, SIMONEMembro del Collaboration Group
;Maria Rosaria Lancia
Membro del Collaboration Group
;Paola VernoleMembro del Collaboration Group
2018
Abstract
We study a quasi-linear evolution equation with nonlinear dynami- cal boundary conditions in a two dimensional domain with Koch-type fractal boundary. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uni- queness results via standard semigroup approach, we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco con- vergence of the energy functionals adapted by T ̈olle to the nonlinear framework in varying Hilbert spaces.File | Dimensione | Formato | |
---|---|---|---|
LanciaetalCPAA.pdf
solo utenti autorizzati
Note: Articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
580.81 kB
Formato
Adobe PDF
|
580.81 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.