In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas.

WiFi-based PCL for monitoring private airfields / Colone, Fabiola; Martelli, Tatiana; Bongioanni, Carlo; Pastina, Debora; Lombardo, Pierfrancesco. - In: IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE. - ISSN 0885-8985. - 32:2(2017), pp. 22-29. [10.1109/MAES.2017.160022]

WiFi-based PCL for monitoring private airfields

COLONE, Fabiola;MARTELLI, TATIANA;BONGIOANNI, CARLO;PASTINA, Debora;LOMBARDO, Pierfrancesco
2017

Abstract

In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas.
2017
Aerospace engineering; space and planetary science; electrical and electronic engineering
01 Pubblicazione su rivista::01a Articolo in rivista
WiFi-based PCL for monitoring private airfields / Colone, Fabiola; Martelli, Tatiana; Bongioanni, Carlo; Pastina, Debora; Lombardo, Pierfrancesco. - In: IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE. - ISSN 0885-8985. - 32:2(2017), pp. 22-29. [10.1109/MAES.2017.160022]
File allegati a questo prodotto
File Dimensione Formato  
Colone_WiFi-based_2017.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF   Contatta l'autore
Colone_WiFi-based_post-print_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 862.13 kB
Formato Adobe PDF
862.13 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1006636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 13
social impact