Wireless sensor networks can facilitate the acquisition of useful data for the assessment and retrofitting of existing structures and infrastructures. In this perspective, recent studies have presented numerical and experimental results about self-powered wireless nodes for structural monitoring applications in the event of earthquake, wherein the energy is scavenged from seismic accelerations. A general computational approach for the analysis and design of energy harvesters under seismic loading, however, has not yet been presented. Therefore, this paper proposes a rational method that relies on the random vibrations theory for the electromechanical analysis of piezoelectric energy harvesters under seismic ground motion. In doing so, the ground acceleration is simulated by means of the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with concentrated mass at the free-end, and its global behavior is approximated by the dynamic response of the fundamental vibration mode only (which is tuned with the dominant frequency of the site soil). Once the Lyapunov equation of the coupled electromechanical problem has been formulated, mean and standard deviation of the generated electric energy are calculated. Numerical results for a cantilever bimorph which piezoelectric layers made of electrospun PVDF nanofibers are discussed in order to understand issues and perspectives about the use of wireless sensor nodes powered by earthquakes. A smart monitoring strategy for the experimental assessment of structures in areas struck by seismic events is finally illustrated.
Energy harvesting from earthquake for vibration-powered wireless sensors / Quaranta, Giuseppe; Trentadue, F.; Maruccio, C.; Marano, G. C.. - ELETTRONICO. - (2017). (Intervento presentato al convegno 4th Conference on Smart Monitoring, Assessment and Rehabilitation of Structures (SMAR 2017) tenutosi a Zürich (Switzerland) nel September 13-15, 2017).
Energy harvesting from earthquake for vibration-powered wireless sensors
QUARANTA, GIUSEPPE;
2017
Abstract
Wireless sensor networks can facilitate the acquisition of useful data for the assessment and retrofitting of existing structures and infrastructures. In this perspective, recent studies have presented numerical and experimental results about self-powered wireless nodes for structural monitoring applications in the event of earthquake, wherein the energy is scavenged from seismic accelerations. A general computational approach for the analysis and design of energy harvesters under seismic loading, however, has not yet been presented. Therefore, this paper proposes a rational method that relies on the random vibrations theory for the electromechanical analysis of piezoelectric energy harvesters under seismic ground motion. In doing so, the ground acceleration is simulated by means of the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with concentrated mass at the free-end, and its global behavior is approximated by the dynamic response of the fundamental vibration mode only (which is tuned with the dominant frequency of the site soil). Once the Lyapunov equation of the coupled electromechanical problem has been formulated, mean and standard deviation of the generated electric energy are calculated. Numerical results for a cantilever bimorph which piezoelectric layers made of electrospun PVDF nanofibers are discussed in order to understand issues and perspectives about the use of wireless sensor nodes powered by earthquakes. A smart monitoring strategy for the experimental assessment of structures in areas struck by seismic events is finally illustrated.File | Dimensione | Formato | |
---|---|---|---|
Quaranta_Energy_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
640.85 kB
Formato
Adobe PDF
|
640.85 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.