We statistically evaluate the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 µm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.00 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field, and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or “ridges”, where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or “nests”, where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.

The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex / Soler, J. D.; Ade, P. A. R.; Angilã¨, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z. Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, Enzo; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward Thompson, D.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 603:(2017), p. A64. [10.1051/0004-6361/201730608]

The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

PASCALE, ENZO;
2017

Abstract

We statistically evaluate the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 µm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.00 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field, and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or “ridges”, where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or “nests”, where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
2017
Astroparticle physics; dust; extinction; ISM: clouds; ISM: magnetic fields; submillimeter: ISM; Astronomy and Astrophysics; Space and Planetary Science
01 Pubblicazione su rivista::01a Articolo in rivista
The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex / Soler, J. D.; Ade, P. A. R.; Angilã¨, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z. Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, Enzo; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward Thompson, D.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 603:(2017), p. A64. [10.1051/0004-6361/201730608]
File allegati a questo prodotto
File Dimensione Formato  
Pascale_Molecular-complex.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1004756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 62
social impact