We deal with a Savage-like decision problem under uncertainty where, for every state of the world, the consequence of each decision (multi-act) is generally uncertain: the decision maker only knows the set of possible alternatives where it can range (multi-consequence). A Choquet expected utility representation theorem for a preference relation on multi-acts is provided, relying on a state-independent cardinal utility function defined on the (finite) set of all alternatives.

A savage-like representation theorem for preferences on multi-acts / Coletti, Giulianella; Petturiti, Davide; Vantaggi, Barbara. - STAMPA. - 456(2017), pp. 127-134. [10.1007/978-3-319-42972-4_16].

A savage-like representation theorem for preferences on multi-acts

VANTAGGI, Barbara
2017

Abstract

We deal with a Savage-like decision problem under uncertainty where, for every state of the world, the consequence of each decision (multi-act) is generally uncertain: the decision maker only knows the set of possible alternatives where it can range (multi-consequence). A Choquet expected utility representation theorem for a preference relation on multi-acts is provided, relying on a state-independent cardinal utility function defined on the (finite) set of all alternatives.
2017
Soft Methods for Data Science
9783319429717
9783319429717
Multi-acts; preferences; choquet expected utility
02 Pubblicazione su volume::02a Capitolo o Articolo
A savage-like representation theorem for preferences on multi-acts / Coletti, Giulianella; Petturiti, Davide; Vantaggi, Barbara. - STAMPA. - 456(2017), pp. 127-134. [10.1007/978-3-319-42972-4_16].
File allegati a questo prodotto
File Dimensione Formato  
Vantaggi_Savage-Like-Representation_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 339.89 kB
Formato Adobe PDF
339.89 kB Adobe PDF   Contatta l'autore
Vantaggi_Frontespizio-Indice_Soft_2017.pdf

solo gestori archivio

Note: https://link.springer.com/book/10.1007/978-3-319-42972-4
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/924534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact