Functional Link Artificial Neural Networks (FLANNs) have been extensively used for tasks of audio and speech classification, due to their combination of universal approximation capabilities and fast training. The performance of a FLANN, however, is known to be dependent on the specific functional link (FL) expansion that is used. In this paper, we provide an extensive benchmark of multiple FL expansions on several audio classification problems, including speech discrimination, genre classification, and artist recognition. Our experimental results show that a random-vector expansion is well suited for classification tasks, achieving the best accuracy in two out of three tasks.

Benchmarking functional link expansions for audio classification tasks / Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Parisi, Raffaele; Uncini, Aurelio. - 54(2016), pp. 133-141. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-3-319-33747-0_13].

Benchmarking functional link expansions for audio classification tasks

SCARDAPANE, SIMONE;COMMINIELLO, DANILO;SCARPINITI, MICHELE;PARISI, Raffaele;UNCINI, Aurelio
2016

Abstract

Functional Link Artificial Neural Networks (FLANNs) have been extensively used for tasks of audio and speech classification, due to their combination of universal approximation capabilities and fast training. The performance of a FLANN, however, is known to be dependent on the specific functional link (FL) expansion that is used. In this paper, we provide an extensive benchmark of multiple FL expansions on several audio classification problems, including speech discrimination, genre classification, and artist recognition. Our experimental results show that a random-vector expansion is well suited for classification tasks, achieving the best accuracy in two out of three tasks.
2016
Advances in Neural Networks - Computational Intelligence for ICT
978-3-319-33746-3
Functional links; audio classification; speech recognition
02 Pubblicazione su volume::02a Capitolo o Articolo
Benchmarking functional link expansions for audio classification tasks / Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Parisi, Raffaele; Uncini, Aurelio. - 54(2016), pp. 133-141. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-3-319-33747-0_13].
File allegati a questo prodotto
File Dimensione Formato  
Scardapane_reprint_Benchmarking_2016.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 132.22 kB
Formato Adobe PDF
132.22 kB Adobe PDF   Contatta l'autore
Scardapane_Benchmarking-functional_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 182.08 kB
Formato Adobe PDF
182.08 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/875919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact