In this chapter we study the problem of viscous friction in the framework of microscopic models of classical point particles. The system body/medium is modeled by the dynamics of a heavy particle (the body), subjected to a constant force and interacting with infinitely many identical particles (the medium). We discuss conditions on the body/medium interaction that are necessary for the body to reach a finite limiting velocity. Rigorous results are given in the case of quasi-one-dimensional and one-dimensional systems.

Gas of point particles / Butta', Paolo; Cavallaro, Guido; Marchioro, Carlo. - STAMPA. - (2015), pp. 1-41. - LECTURE NOTES IN MATHEMATICS. [10.1007/978-3-319-14759-8_1].

Gas of point particles

BUTTA', Paolo;CAVALLARO, GUIDO;MARCHIORO, Carlo
2015

Abstract

In this chapter we study the problem of viscous friction in the framework of microscopic models of classical point particles. The system body/medium is modeled by the dynamics of a heavy particle (the body), subjected to a constant force and interacting with infinitely many identical particles (the medium). We discuss conditions on the body/medium interaction that are necessary for the body to reach a finite limiting velocity. Rigorous results are given in the case of quasi-one-dimensional and one-dimensional systems.
2015
Mathematical Models of Viscous Friction
978-3-319-14758-1
978-3-319-14759-8
Infinitely extended system; statistical mechanics; nonequilibrium dynamics
02 Pubblicazione su volume::02a Capitolo o Articolo
Gas of point particles / Butta', Paolo; Cavallaro, Guido; Marchioro, Carlo. - STAMPA. - (2015), pp. 1-41. - LECTURE NOTES IN MATHEMATICS. [10.1007/978-3-319-14759-8_1].
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Mathematical-models_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/772238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact