In this work we propose a linear bi-objective optimization approach to Enhanced Indexation that maximizes average excess return and minimizes underperformance over a learning period. Our model can be efficiently solved to optimality by means of standard Linear Programming techniques. On the theoretical side, we investigate conditions that guarantee or forbid the existence of a portfolio strictly outperforming the index. We also support our model with extensive empirical analysis on publicly available real-world financial datasets, including comparison with previous studies, performance and diversification analysis, and verification of some of the proposed theoretical results on real data.

A Linear Risk-Return Model for Enhanced Indexation / Bruni, Renato; Francesco, Cesarone; Andrea, Scozzari; Tardella, Fabio. - ELETTRONICO. - 2354321(2013). [10.2139/ssrn.2354321].

A Linear Risk-Return Model for Enhanced Indexation

BRUNI, Renato;TARDELLA, Fabio
2013

Abstract

In this work we propose a linear bi-objective optimization approach to Enhanced Indexation that maximizes average excess return and minimizes underperformance over a learning period. Our model can be efficiently solved to optimality by means of standard Linear Programming techniques. On the theoretical side, we investigate conditions that guarantee or forbid the existence of a portfolio strictly outperforming the index. We also support our model with extensive empirical analysis on publicly available real-world financial datasets, including comparison with previous studies, performance and diversification analysis, and verification of some of the proposed theoretical results on real data.
2013
Social Science Research Network
02 Pubblicazione su volume::02a Capitolo o Articolo
A Linear Risk-Return Model for Enhanced Indexation / Bruni, Renato; Francesco, Cesarone; Andrea, Scozzari; Tardella, Fabio. - ELETTRONICO. - 2354321(2013). [10.2139/ssrn.2354321].
File allegati a questo prodotto
File Dimensione Formato  
VE_2013_11573-725899.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/725899
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact