We propose a procedure for detecting the modes of a density estimate and test their significance. We use a data-splitting approach: potential modes are identified using the first half of the data and their significance is tested with the second half of the data. The mode test is based on nonparametric confidence intervals for the eigenvalues of the Hessian. In order to get valid bootstrap confidence sets even in presence of multiplicity of the eigenvalues, we use a bootstrap based on an elementary-symmetric-polynomial transformation.

Nonparametric Mode Hunting / PERONE PACIFICO, Marco. - ELETTRONICO. - (2014).

Nonparametric Mode Hunting

PERONE PACIFICO, Marco
2014

Abstract

We propose a procedure for detecting the modes of a density estimate and test their significance. We use a data-splitting approach: potential modes are identified using the first half of the data and their significance is tested with the second half of the data. The mode test is based on nonparametric confidence intervals for the eigenvalues of the Hessian. In order to get valid bootstrap confidence sets even in presence of multiplicity of the eigenvalues, we use a bootstrap based on an elementary-symmetric-polynomial transformation.
2014
47th SIS Scientific Meeting of the Italian Statistical Society
978-88-8467-874-4
bootstrap; density estimation; elementary symmetric polynomials; modes
02 Pubblicazione su volume::02a Capitolo o Articolo
Nonparametric Mode Hunting / PERONE PACIFICO, Marco. - ELETTRONICO. - (2014).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/620994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact