Short term prediction of air pollution is gaining increasing attention in the research community, due to its social and economical impact. In this paper we study the application of a Kernel Adaptive Filtering (KAF) algorithm to the problem of predicting PM10 data in the Italian province of Ancona, and we show how this predictor is able to achieve a significant low error with the inclusion of chemical data correlated with the PM10 such as NO2. © Springer-Verlag Berlin Heidelberg 2013.

PM10 forecasting using kernel adaptive filtering: An Italian case study / Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Parisi, Raffaele; Uncini, Aurelio. - 19(2013), pp. 93-100. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-3-642-35467-0_10].

PM10 forecasting using kernel adaptive filtering: An Italian case study

SCARDAPANE, SIMONE;COMMINIELLO, DANILO;SCARPINITI, MICHELE;PARISI, Raffaele;UNCINI, Aurelio
2013

Abstract

Short term prediction of air pollution is gaining increasing attention in the research community, due to its social and economical impact. In this paper we study the application of a Kernel Adaptive Filtering (KAF) algorithm to the problem of predicting PM10 data in the Italian province of Ancona, and we show how this predictor is able to achieve a significant low error with the inclusion of chemical data correlated with the PM10 such as NO2. © Springer-Verlag Berlin Heidelberg 2013.
2013
Neural Nets and Surroundings
9783642354663
9783642354670
air pollution; kernel adaptive filters; least mean square; nonlinear adaptive filtering
02 Pubblicazione su volume::02a Capitolo o Articolo
PM10 forecasting using kernel adaptive filtering: An Italian case study / Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Parisi, Raffaele; Uncini, Aurelio. - 19(2013), pp. 93-100. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-3-642-35467-0_10].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/508249
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact