Enhanced Indexation is the problem of selecting a portfolio that should produce excess return with respect to a given benchmark index. In this work we propose a linear bi-objective optimization approach to Enhanced Indexation that maximizes average excess return and minimizes underperformance over a learning period. This can be formulated as a simple Linear Programming problem that is solved to optimality by standard LP codes. Moreover, we investigate conditions that guarantee or forbid the existence of a portfolio strictly outperforming the index. We present extensive computational analysis of the results on publicly available real-world financial datasets, including comparison with previous results, performance and diversification analysis.

A New LP Model for Enhanced Indexation / Bruni, Renato; F., Cesarone; A., Scozzari; Tardella, Fabio. - 168(2012), pp. 1-24. - WORKING PAPERS.

A New LP Model for Enhanced Indexation

BRUNI, Renato;TARDELLA, Fabio
2012

Abstract

Enhanced Indexation is the problem of selecting a portfolio that should produce excess return with respect to a given benchmark index. In this work we propose a linear bi-objective optimization approach to Enhanced Indexation that maximizes average excess return and minimizes underperformance over a learning period. This can be formulated as a simple Linear Programming problem that is solved to optimality by standard LP codes. Moreover, we investigate conditions that guarantee or forbid the existence of a portfolio strictly outperforming the index. We present extensive computational analysis of the results on publicly available real-world financial datasets, including comparison with previous results, performance and diversification analysis.
2012
Departmental Working Papers of Economics
Portfolio Optimization; Linear Programming; Enhanced Indexation
02 Pubblicazione su volume::02a Capitolo o Articolo
A New LP Model for Enhanced Indexation / Bruni, Renato; F., Cesarone; A., Scozzari; Tardella, Fabio. - 168(2012), pp. 1-24. - WORKING PAPERS.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/497512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact