In this paper, we investigate the full equivalence, under basic conditions, between the Probabilistic PCA clustering approach and the reconstruction of signal subspaces based on the singular value decomposition. Therefore this equivalence allows the adaptive determination of the clusters identified on data, in order to maximize the quality of the reconstructed signal. Furthermore, using known results in SVD framework, we also introduce a new technique to estimate automatically the dimension of the latent variable subspace.

A probabilistic PCA clustering approach to the SVD estimate of signal subspaces / Panella, Massimo; G., Grisanti; Rizzi, Antonello. - STAMPA. - (2005), pp. 271-279. ((Intervento presentato al convegno 15th Italian Workshop on Neural Nets (WIRN VETRI 2004) tenutosi a Perugia, ITALY nel SEP 14-17, 2004. [10.1007/1-4020-3432-6_32].

A probabilistic PCA clustering approach to the SVD estimate of signal subspaces

PANELLA, Massimo;RIZZI, Antonello
2005

Abstract

In this paper, we investigate the full equivalence, under basic conditions, between the Probabilistic PCA clustering approach and the reconstruction of signal subspaces based on the singular value decomposition. Therefore this equivalence allows the adaptive determination of the clusters identified on data, in order to maximize the quality of the reconstructed signal. Furthermore, using known results in SVD framework, we also introduce a new technique to estimate automatically the dimension of the latent variable subspace.
2005
Biological and Artificial Intelligence Environments
9781402034312
probabilistic pca clustering; shem algorithm; svd signal estimate
02 Pubblicazione su volume::02a Capitolo o Articolo
A probabilistic PCA clustering approach to the SVD estimate of signal subspaces / Panella, Massimo; G., Grisanti; Rizzi, Antonello. - STAMPA. - (2005), pp. 271-279. ((Intervento presentato al convegno 15th Italian Workshop on Neural Nets (WIRN VETRI 2004) tenutosi a Perugia, ITALY nel SEP 14-17, 2004. [10.1007/1-4020-3432-6_32].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/231447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact