Random neural networks mimic at a very deep level the biological nervous system. However, it is difficult to meet during learning the biological constraints imposed on their parameters. In the paper two possible extensions are proposed in order to remove this difficulty. Moreover, the proposed learning algorithm is tailored to the specific architecture in order to reduce the computational cost. Two architectures are considered and illustrated by simulation tests.

Extended random neural networks / Martinelli, Giuseppe; FRATTALE MASCIOLI, Fabio Massimo; Panella, Massimo; Rizzi, Antonello. - STAMPA. - 2486(2002), pp. 75-82. - LECTURE NOTES IN COMPUTER SCIENCE. [10.1007/3-540-45808-5_7].

Extended random neural networks

MARTINELLI, Giuseppe;FRATTALE MASCIOLI, Fabio Massimo;PANELLA, Massimo
;
RIZZI, Antonello
2002

Abstract

Random neural networks mimic at a very deep level the biological nervous system. However, it is difficult to meet during learning the biological constraints imposed on their parameters. In the paper two possible extensions are proposed in order to remove this difficulty. Moreover, the proposed learning algorithm is tailored to the specific architecture in order to reduce the computational cost. Two architectures are considered and illustrated by simulation tests.
2002
Neural Nets
978-3-540-44265-3
bimodal neuron; recurrent architecture; recurrent architecture.
02 Pubblicazione su volume::02a Capitolo o Articolo
Extended random neural networks / Martinelli, Giuseppe; FRATTALE MASCIOLI, Fabio Massimo; Panella, Massimo; Rizzi, Antonello. - STAMPA. - 2486(2002), pp. 75-82. - LECTURE NOTES IN COMPUTER SCIENCE. [10.1007/3-540-45808-5_7].
File allegati a questo prodotto
File Dimensione Formato  
Martinelli_Extended-random_2002.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 119.53 kB
Formato Adobe PDF
119.53 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/199804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact