In this paper, we propose a deep learning based approach for the environmental sound classification (ESC). The proposed approach is based on a deep version of the Echo State Network (DeepESN) and it has been tested on the well-known ESC-10 dataset and on some real-world recordings of vehicles used in construction sites (CS dataset). The implemented DeepESN exploits different classifiers working on the extracted hidden features. The overall accuracy on the test set is up to 77.8% for ESC-10 and 99.6% for the CS, comparable to other state-of-the-art machine learning methods and demonstrating the effectiveness of the approach.

Deep echo state network for environmental sound classification / Scarpiniti, Michele; Perticarà, Sofia; Lee, Yong-Cheol; Uncini, Aurelio. - (2025), pp. 71-82. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-981-96-0994-9_7].

Deep echo state network for environmental sound classification

Scarpiniti, Michele
;
Uncini, Aurelio
2025

Abstract

In this paper, we propose a deep learning based approach for the environmental sound classification (ESC). The proposed approach is based on a deep version of the Echo State Network (DeepESN) and it has been tested on the well-known ESC-10 dataset and on some real-world recordings of vehicles used in construction sites (CS dataset). The implemented DeepESN exploits different classifiers working on the extracted hidden features. The overall accuracy on the test set is up to 77.8% for ESC-10 and 99.6% for the CS, comparable to other state-of-the-art machine learning methods and demonstrating the effectiveness of the approach.
2025
Advanced Neural Artificial Intelligence: Theories and Applications
9789819609932
9789819609949
Environmental sound classification (ESC); Deep Echo State Network (DeepESN); deep learning; audio processing; construction sites
02 Pubblicazione su volume::02a Capitolo o Articolo
Deep echo state network for environmental sound classification / Scarpiniti, Michele; Perticarà, Sofia; Lee, Yong-Cheol; Uncini, Aurelio. - (2025), pp. 71-82. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-981-96-0994-9_7].
File allegati a questo prodotto
File Dimensione Formato  
Scarpiniti_Deep_2025.pdf

solo gestori archivio

Note: DESN_editoriale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 233.06 kB
Formato Adobe PDF
233.06 kB Adobe PDF   Contatta l'autore
Scarpiniti_postprint_Deep_2025.pdf.pdf

solo gestori archivio

Note: DESN_postprint
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 292.01 kB
Formato Adobe PDF
292.01 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact