Recommender systems play a crucial role in alleviating information overload by providing personalized recommendations tailored to users’ preferences and interests. Recently, Graph Neural Networks (GNNs) have emerged as a promising approach for recommender systems, leveraging their ability to effectively capture complex relationships and dependencies between users and items by representing them as nodes in a graph structure. In this study, we investigate the environmental impact of GNN-based recommender systems, an aspect that has been largely overlooked in the literature. Specifically, we conduct a comprehensive analysis of the carbon emissions associated with training and deploying GNN models for recommendation tasks. We evaluate the energy consumption and carbon footprint of different GNN architectures and configurations, considering factors such as model complexity, training duration, hardware specifications and embedding size. By addressing the environmental impact of resource-intensive algorithms in recommender systems, this study contributes to the ongoing efforts towards sustainable and responsible artificial intelligence, promoting the development of eco-friendly recommendation technologies that balance performance and environmental considerations. Code is available at: https://github.com/antoniopurificato/gnn_recommendation_and_environment.

Eco-Aware Graph Neural Networks for Sustainable Recommendations / Purificato, Antonio; Silvestri, Fabrizio. - (2025), pp. 111-122. [10.1007/978-3-031-87654-7_11].

Eco-Aware Graph Neural Networks for Sustainable Recommendations

Antonio Purificato
Methodology
;
Fabrizio Silvestri
Writing – Review & Editing
2025

Abstract

Recommender systems play a crucial role in alleviating information overload by providing personalized recommendations tailored to users’ preferences and interests. Recently, Graph Neural Networks (GNNs) have emerged as a promising approach for recommender systems, leveraging their ability to effectively capture complex relationships and dependencies between users and items by representing them as nodes in a graph structure. In this study, we investigate the environmental impact of GNN-based recommender systems, an aspect that has been largely overlooked in the literature. Specifically, we conduct a comprehensive analysis of the carbon emissions associated with training and deploying GNN models for recommendation tasks. We evaluate the energy consumption and carbon footprint of different GNN architectures and configurations, considering factors such as model complexity, training duration, hardware specifications and embedding size. By addressing the environmental impact of resource-intensive algorithms in recommender systems, this study contributes to the ongoing efforts towards sustainable and responsible artificial intelligence, promoting the development of eco-friendly recommendation technologies that balance performance and environmental considerations. Code is available at: https://github.com/antoniopurificato/gnn_recommendation_and_environment.
2025
Recommender Systems for Sustainability and Social Good. RecSoGood 2024.
9783031876530
9783031876547
Sustainability, Recommendation Systems, Graph Neural Networks
02 Pubblicazione su volume::02a Capitolo o Articolo
Eco-Aware Graph Neural Networks for Sustainable Recommendations / Purificato, Antonio; Silvestri, Fabrizio. - (2025), pp. 111-122. [10.1007/978-3-031-87654-7_11].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1736424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact