Recent pandemic stressed out the necessity to develop new and efficient biosensor system for the detection of airborne pathogens. A new, simple strategy is presented for the optical biosensing of airborne pathogens employing vibrational spectroscopy interrogation and nanostructured platforms. As a proof of concept, we pay attention to SARS-Cov-2 virus, using its spike glycoprotein as optical biomarker. Here, we report the main steps in the optical biosensor development, from the vibrational characterization of biomarker and its structural investigation to the potential nanostructured substrates. These results constitute only the preliminary first steps anyway, the suggested approach could represent a prospective label-free promising tool for a wide range monitoring of pathogens in air in close environments.

Best Student Poster at The European Optical Society Annual Meeting EOSAM2024 / Mosetti, Rosanna; Mancini, Tiziana; D’Arco, Annalisa; Macis, Salvatore; Luchetti, Nicole; Minicozzi, Velia; Notargiacomo, Andrea; Pea, Marialilia; Falcaro, Paolo; Carraro, Francesco; DELLA VENTURA, Giancarlo; Marcelli, Augusto; Lupi, Stefano. - (2024).

Best Student Poster at The European Optical Society Annual Meeting EOSAM2024

Rosanna Mosetti;Tiziana Mancini;Annalisa D’Arco;Salvatore Macis;Andrea Notargiacomo;Giancarlo Della Ventura;Stefano Lupi
2024

Abstract

Recent pandemic stressed out the necessity to develop new and efficient biosensor system for the detection of airborne pathogens. A new, simple strategy is presented for the optical biosensing of airborne pathogens employing vibrational spectroscopy interrogation and nanostructured platforms. As a proof of concept, we pay attention to SARS-Cov-2 virus, using its spike glycoprotein as optical biomarker. Here, we report the main steps in the optical biosensor development, from the vibrational characterization of biomarker and its structural investigation to the potential nanostructured substrates. These results constitute only the preliminary first steps anyway, the suggested approach could represent a prospective label-free promising tool for a wide range monitoring of pathogens in air in close environments.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact