We analyze, both analytically and numerically, a 3D billiard-like model introduced in Phys. Rev. Res. 5, 043063 (2023) to highlight some aspects of its steady state dynamics. First, we study the equation describing the interface between equilibrium and nonequilibrium phases in the parameter space and show that, in certain regimes, the solution can be expressed in an analytical form. Moreover, we also investigate the statistics of the fluctuations of the stationary particle current and try to establish a connection with the existing framework of the Fluctuation Relations.

Steady state fluctuations in a 3D particle model out of equilibrium / Cirillo, E. N. M.; Colangeli, M.; Kroger, M.; Rondoni, L.. - (2024), pp. 615-631. - SPRINGER PROCEEDINGS IN PHYSICS. [10.1007/978-3-031-66874-6_50].

Steady state fluctuations in a 3D particle model out of equilibrium

Cirillo E. N. M.;
2024

Abstract

We analyze, both analytically and numerically, a 3D billiard-like model introduced in Phys. Rev. Res. 5, 043063 (2023) to highlight some aspects of its steady state dynamics. First, we study the equation describing the interface between equilibrium and nonequilibrium phases in the parameter space and show that, in certain regimes, the solution can be expressed in an analytical form. Moreover, we also investigate the statistics of the fluctuations of the stationary particle current and try to establish a connection with the existing framework of the Fluctuation Relations.
2024
Springer Proceedings in Physics
9783031668739
9783031668746
Billiards; Currents; Fluctuations; Nonequilibrium; Phase Transitions; Steady States
02 Pubblicazione su volume::02a Capitolo o Articolo
Steady state fluctuations in a 3D particle model out of equilibrium / Cirillo, E. N. M.; Colangeli, M.; Kroger, M.; Rondoni, L.. - (2024), pp. 615-631. - SPRINGER PROCEEDINGS IN PHYSICS. [10.1007/978-3-031-66874-6_50].
File allegati a questo prodotto
File Dimensione Formato  
Cirillo_steady_2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact