We employ an extension of the Mixture of Latent Trait Analyzers (MLTA) model to analyse the digital divide in Italy in a biclustering perspective. In detail, units (individuals) are partitioned into clusters (components) via a finite mixture of latent trait models; in each component, variables (digital skills) are partitioned into clusters (segments) by modifying the linear predictor’s specification of the original MLTA model. This allows us to identify homogeneous groups of individuals with respect to subsets of digital skills, also accounting for the influence of demographic features on the probability of being digitally skilled.

A Biclustering Approach via Mixture of Latent Trait Analyzers for the Analysis of Digital Divide in Italy / Failli, Dalila; Arpino, Bruno; Marino, MARIA FRANCESCA; Martella, Francesca. - (2024), pp. 102-108. [10.1007/978-3-031-65723-8_16].

A Biclustering Approach via Mixture of Latent Trait Analyzers for the Analysis of Digital Divide in Italy

Maria Francesca Marino;Francesca Martella
2024

Abstract

We employ an extension of the Mixture of Latent Trait Analyzers (MLTA) model to analyse the digital divide in Italy in a biclustering perspective. In detail, units (individuals) are partitioned into clusters (components) via a finite mixture of latent trait models; in each component, variables (digital skills) are partitioned into clusters (segments) by modifying the linear predictor’s specification of the original MLTA model. This allows us to identify homogeneous groups of individuals with respect to subsets of digital skills, also accounting for the influence of demographic features on the probability of being digitally skilled.
2024
Developments in Statistical Modelling. Contributions to Statistics.
978-3-031-65722-1
model-based clustering ;co-clustering ; finite mixtures; latent variables ; EM algorithm
02 Pubblicazione su volume::02a Capitolo o Articolo
A Biclustering Approach via Mixture of Latent Trait Analyzers for the Analysis of Digital Divide in Italy / Failli, Dalila; Arpino, Bruno; Marino, MARIA FRANCESCA; Martella, Francesca. - (2024), pp. 102-108. [10.1007/978-3-031-65723-8_16].
File allegati a questo prodotto
File Dimensione Formato  
Failli_ Biclustering_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 260.25 kB
Formato Adobe PDF
260.25 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1716810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact