A new nonparametric technique to impute missing data is proposed in order to obtain a completed data-matrix, capable of producing a degree of reliability for the imputations. Without taking into account strong assumptions, we introduce multiple imputations using bootstrap and nonparametric predictors. It is shown that, in this manner, we can obtain better imputations than with other known methods producing a more reliable completed data-matrix. Using two simulations, we show that the proposed technique can be generalized to consider non-monotone patterns of missing data with interesting results.

Bootstrap and Nonparametric Predictors to Impute Missing Data / DI CIACCIO, Agostino. - STAMPA. - 1(2011), pp. 203-210. - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION. [10.1007/978-3-642-13312-1_20].

Bootstrap and Nonparametric Predictors to Impute Missing Data

DI CIACCIO, AGOSTINO
2011

Abstract

A new nonparametric technique to impute missing data is proposed in order to obtain a completed data-matrix, capable of producing a degree of reliability for the imputations. Without taking into account strong assumptions, we introduce multiple imputations using bootstrap and nonparametric predictors. It is shown that, in this manner, we can obtain better imputations than with other known methods producing a more reliable completed data-matrix. Using two simulations, we show that the proposed technique can be generalized to consider non-monotone patterns of missing data with interesting results.
2011
CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES
9783642133114
imputation; missing data; nonparametric methods
02 Pubblicazione su volume::02a Capitolo, Articolo o Contributo
Bootstrap and Nonparametric Predictors to Impute Missing Data / DI CIACCIO, Agostino. - STAMPA. - 1(2011), pp. 203-210. - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION. [10.1007/978-3-642-13312-1_20].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/170997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact