Statistical Matching, at a macro level, consists in estimating the joint distribution of variables separately observed in independent samples. As a consequence of the lack of joint information on the variables of interest, uncertainty about the data generating model is the most relevant feature of matching. In the present paper the use of graphical models to deal with the statistical matching uncertainty for multivariate categorical variables is considered, under both a model-based and a model-assisted perspective.

Data Integration without conditional independence: a Bayesian Networks approach / Conti, Pier Luigi; Vicard, Paola; Vitale, Vincenzina. - (2023), pp. 21-26.

Data Integration without conditional independence: a Bayesian Networks approach

Pier Luigi Conti
Methodology
;
Paola Vicard
Methodology
;
Vincenzina Vitale
Methodology
2023

Abstract

Statistical Matching, at a macro level, consists in estimating the joint distribution of variables separately observed in independent samples. As a consequence of the lack of joint information on the variables of interest, uncertainty about the data generating model is the most relevant feature of matching. In the present paper the use of graphical models to deal with the statistical matching uncertainty for multivariate categorical variables is considered, under both a model-based and a model-assisted perspective.
2023
SEAS IN - Book of Short Papers
9788891935618
Data integration ; Statistical matching ; Bayesian Networks ; Uncertainty
02 Pubblicazione su volume::02a Capitolo o Articolo
Data Integration without conditional independence: a Bayesian Networks approach / Conti, Pier Luigi; Vicard, Paola; Vitale, Vincenzina. - (2023), pp. 21-26.
File allegati a questo prodotto
File Dimensione Formato  
SEAS IN - conti-vicard-vitale.pdf

solo gestori archivio

Note: Articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 728.65 kB
Formato Adobe PDF
728.65 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact